پیش‌بینی بافت خاک با استفاده از شبکه‌های عصبی مصنوعی

Authors

  • الناز خانباباخانی دانشجوی کارشناسی ارشد خاکشناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
Abstract:

بافت خاک یکی از مهم­ترین ویژگی‌های خاک است که بر روی بسیاری از خصوصیات فیزیکی و شیمیایی مانند ظرفیت نگهداری آب، ظرفیت تبادل کاتیونی، حاصلخیزی خاک و تهویه خاک اثر می­گذارد. امروزه از فناوری هوش مصنوعی مانند شبکه­های عصبی و عصبی فازی برای حل مسائل مربوط به مدل­سازی سیستم­ها و فرآیند­ها استفاده می­شود. در این پژوهش کارآیی شبکه‌های عصبی مصنوعی در پیش‌بینی بافت خاک بررسی شد. بدین­منظور 150 نمونه خاک از عمق 15- 0 سانتی‌متری از حوزه آبخیز سد گاوشان در استان کردستان جمع­آوری گردید. موقعیت جغرافیایی، ارتفاع و درصد شیب در هر نقطه ثبت شد. بافت خاک در آزمایشگاه به‌روش هیدرومتری اندازه‌گیری شد. با استفاده از شبکه‌های عصبی مصنوعی رابطه بین طول و عرض جغرافیایی، ارتفاع و شیب و درصد هر کدام از گروه‌های ذرات خاک با استفاده از نرم‌افزار MATLAB به‌دست آمد. دقت شبکه ساخته شده با استفاده از شاخص‌های آماری مانند شاخص ریشه میانگین مربعات خطا (RMSE)، شاخص نسبت خطای متوسط هندسی (GMER) و ضریب همبستگی (R) ارزیابی گردید. نتایج به‌دست آمده نشان داد که کارآیی روش استفاده شده برای برآورد مقدار شن و رس خاک نسبتاً یکسان و برای برآورد مقدار سیلت کم‌تر بود؛ با این حال در سطح برآورد بافت خاک روش استفاده شده از کارآیی بالایی برخوردار نبود.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

برآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی

دمای خاک یکی از متغیرهای مهم در مطالعات هیدرولوژی، هواشناسی، کشاورزی و اقلیم­شناسی است که اندازه­گیری و برآورد آن ضروری است. با توجه به این­که دمای خاک فقط در ایستگاه­های سینوپتیک کشور اندازه­گیری می­شود، کمبود آن در نقاط فاقد ایستگاه از چالش­های بزرگ در بسیاری از مطالعات مرتبط با کشاورزی است. در این پژوهش، با استفاده از پارامترهای هواشناسی ایستگاه سینوپتیک شیراز در یک دوره 9 ساله (2008-2000) ب...

full text

تخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی

هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل ...

full text

پیش بینی رفتار مشتریان با استفاده از تکنیک شبکههای عصبی مصنوعی

امروزه روش های کمی، به یکی از مهم ترین ابزارهای پیش بینی برای اخذ تصمیمات و سرمایه گذاریهای کلان در بازارها تبدیل شده اند. دقت پیش بینی، یکی از مهم ترین فاکتورهای انتخاب روش پیش بینی است؛ شبکه های عصبی مصنوعی، برنامه های کامپیوتری منعطفی هستند که در سطح گسترده ای برای پیش بینی، با درجه بالایی از دقت به کار برده می شوند. امروزه میتوان با استفاده از تکنیک های داده کاوی و شبکه های عصبی به بررسی و ...

full text

پیشبینی آماری پهنه بندی خطر زلزله احتمالی با استفاده شبکه های عصبی مصنوعی

پیش‌بینی محل وقوع زلزله‌های آتی همراه با تعیین درصد احتمال رخداد، می‌تواند در کاهش خطرات ناشی از زلزله بسیار سودمند باشد. تعیین محل‌های پیش‌بینی شده، سبب افزایش توجه به طراحی، به‌سازی لرزه­ای و ارزیابی قابلیت اعتمادپذیری سازه‌های موجود در این مکان‌ها می‌شود. در پیش‌بینی زمان وقوع زلزله فرضیه‌ها و نظریه‌های گسترده‌ای مطرح است. هنوز شیوه‌ای دقیق برای پیش‌بینی زمان رخداد زلزله‌های آتی مورد تأیید ق...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1

pages  1- 10

publication date 2018-11-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023