پیشبینی بافت خاک با استفاده از شبکههای عصبی مصنوعی
Authors
Abstract:
بافت خاک یکی از مهمترین ویژگیهای خاک است که بر روی بسیاری از خصوصیات فیزیکی و شیمیایی مانند ظرفیت نگهداری آب، ظرفیت تبادل کاتیونی، حاصلخیزی خاک و تهویه خاک اثر میگذارد. امروزه از فناوری هوش مصنوعی مانند شبکههای عصبی و عصبی فازی برای حل مسائل مربوط به مدلسازی سیستمها و فرآیندها استفاده میشود. در این پژوهش کارآیی شبکههای عصبی مصنوعی در پیشبینی بافت خاک بررسی شد. بدینمنظور 150 نمونه خاک از عمق 15- 0 سانتیمتری از حوزه آبخیز سد گاوشان در استان کردستان جمعآوری گردید. موقعیت جغرافیایی، ارتفاع و درصد شیب در هر نقطه ثبت شد. بافت خاک در آزمایشگاه بهروش هیدرومتری اندازهگیری شد. با استفاده از شبکههای عصبی مصنوعی رابطه بین طول و عرض جغرافیایی، ارتفاع و شیب و درصد هر کدام از گروههای ذرات خاک با استفاده از نرمافزار MATLAB بهدست آمد. دقت شبکه ساخته شده با استفاده از شاخصهای آماری مانند شاخص ریشه میانگین مربعات خطا (RMSE)، شاخص نسبت خطای متوسط هندسی (GMER) و ضریب همبستگی (R) ارزیابی گردید. نتایج بهدست آمده نشان داد که کارآیی روش استفاده شده برای برآورد مقدار شن و رس خاک نسبتاً یکسان و برای برآورد مقدار سیلت کمتر بود؛ با این حال در سطح برآورد بافت خاک روش استفاده شده از کارآیی بالایی برخوردار نبود.
similar resources
برآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی
دمای خاک یکی از متغیرهای مهم در مطالعات هیدرولوژی، هواشناسی، کشاورزی و اقلیمشناسی است که اندازهگیری و برآورد آن ضروری است. با توجه به اینکه دمای خاک فقط در ایستگاههای سینوپتیک کشور اندازهگیری میشود، کمبود آن در نقاط فاقد ایستگاه از چالشهای بزرگ در بسیاری از مطالعات مرتبط با کشاورزی است. در این پژوهش، با استفاده از پارامترهای هواشناسی ایستگاه سینوپتیک شیراز در یک دوره 9 ساله (2008-2000) ب...
full textتخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی
هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل ...
full textپیش بینی رفتار مشتریان با استفاده از تکنیک شبکههای عصبی مصنوعی
امروزه روش های کمی، به یکی از مهم ترین ابزارهای پیش بینی برای اخذ تصمیمات و سرمایه گذاریهای کلان در بازارها تبدیل شده اند. دقت پیش بینی، یکی از مهم ترین فاکتورهای انتخاب روش پیش بینی است؛ شبکه های عصبی مصنوعی، برنامه های کامپیوتری منعطفی هستند که در سطح گسترده ای برای پیش بینی، با درجه بالایی از دقت به کار برده می شوند. امروزه میتوان با استفاده از تکنیک های داده کاوی و شبکه های عصبی به بررسی و ...
full textپیشبینی آماری پهنه بندی خطر زلزله احتمالی با استفاده شبکه های عصبی مصنوعی
پیشبینی محل وقوع زلزلههای آتی همراه با تعیین درصد احتمال رخداد، میتواند در کاهش خطرات ناشی از زلزله بسیار سودمند باشد. تعیین محلهای پیشبینی شده، سبب افزایش توجه به طراحی، بهسازی لرزهای و ارزیابی قابلیت اعتمادپذیری سازههای موجود در این مکانها میشود. در پیشبینی زمان وقوع زلزله فرضیهها و نظریههای گستردهای مطرح است. هنوز شیوهای دقیق برای پیشبینی زمان رخداد زلزلههای آتی مورد تأیید ق...
full textMy Resources
Journal title
volume 8 issue 1
pages 1- 10
publication date 2018-11-22
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023